近期,我们研究生谢自浩(第一作者)、教师贺德清(通讯作者)、苏超(通讯作者)等的研究成果在《International Journal of Hydrogen Energy》(IF=8.1)上发表。
近期,我们研究生谢自浩(第一作者)、教师贺德清(通讯作者)、苏超(通讯作者)等的研究成果“In situ exsolution-induced formation of amorphous/crystalline heterointerfaces in Ba0.6Sr0.4Co0.8Fe0.2O3-δ for enhanced oxygen electrocatalysis in zinc-air batteries”在《International Journal of Hydrogen Energy》(IF=8.1)上发表。
论文简介如下:
在水系锌空气电池(ZABs)商业化应用中,主要障碍来自于电化学能量转换技术中的可行、可持续且安全的替代方案。然而,ZABs的实际应用受到四电子氧还原反应(ORR)和氧气析出反应(OER)及其迟缓动力学的限制。在此,我们提出了一种Nb和F共掺杂策略,通过调控原位Ba和Sr的析出,诱导形成具有碱处理的非晶/晶态Ba0.6Sr0.4Co0.8Fe0.2O3-δ异质界面。结合钴的低价态形成、丰富的氧空位和非晶/晶态特征,该催化剂在OER和ORR活性中实现了增强的氧结合能。优化后的双功能钙钛矿氧化物(BSCFeN-Fal)催化剂表现出优异的氧气电催化活性和稳定性,其OER和ORR过电位远低于本研究中的其他钙钛矿氧化物,并且在加速耐久性测试中几乎没有性能衰退。当作为空气电极使用时,BSCFeN-Fal展示了出色的性能,达到了较高的功率密度和显著的循环稳定性。本研究强调了异质结构界面在氧气电催化中的关键作用,为先进中性金属空气电池开辟了新途径。
The main obstacle in the commercial application of aqueous zinc-air batteries (ZABs) are emerging viable, sustainable, and safe alternatives in electrochemical energy conversion technologies. However, the practical realization of ZABs is impeded by four-electron oxygen evolution (OER) and reduction reactions (ORR) and their sluggish kinetics. Herein, we propose a niobium and fluorine co-doping strategy to regulate in situ Ba and Sr exsolution, inducing the formation of amorphous/crystalline Ba0.6Sr0.4Co0.8Fe0.2O3-δ heterointerfaces with an alkali treatment. Associated with the formation of a low valence state of cobalt, an abundant oxygen defects, and amorphous/crystalline feature, the catalyst enables enhanced oxygen binding energy in the OER and ORR activities. The optimized bifunctional perovskite oxide (BSCFeN-Fal) catalysts present an excellent oxygen electrocatalytic activity and stability, with much lower OER and ORR overpotentials than other perovskite oxides in this work and with negligible performance decay in accelerated durability testing. When used as an air-electrode, the BSCFeN-Fal demonstrates excellent performance, achieving high power density and remarkable cycling stability. This work highlights the essential function of the heterostructure interface in oxygen electrocatalysis, opening a new avenue to advanced neutral metal-air batteries.
The working mechanism and performance of BSCFeN-Fal in zinc-air batteries.