近期,我们研究生梁智贤(第一作者)、教师姜姗姗(通讯作者),苏超(通讯作者)等的研究成果“In-situ assembled cobalt-free PSFNRu nanocomposites as bi-functional electrodes for direct ammonia symmetric solid oxide fuel cells”在《Nano Research》(IF=9.6)上发表。
论文简介如下:
对称固体氧化物燃料电池(SSOFCs)由于其成本效益高、热机械兼容性优越以及长期稳定性优异,引起了广泛关注。氨(NH3)作为一种优秀的氢载体,是一种具有高能量密度、便于运输和存储的清洁能源来源。此外,NH3中仅含有氮和氢,因此是无碳的、环保的。在本研究中,我们将原始材料Pr0.32Sr0.48Fe0.8Ni0.2O3-δ(PSFN)中少量Fe替换为Ru,合成了高活性的对称电极材料Pr0.32Sr0.48Fe0.75Ni0.2Ru0.05O3-δ(PSFNRu)。PSFNRu拥有足够的氧空位,能够在还原气氛下原位析出纳米合金颗粒。这种纳米复合材料能够促进电化学反应。例如,在800 ℃下,采用PSFNRu电极的SSOFC在使用氢气(H2)作为燃料时,达到了736 mW cm-2的峰值功率密度(PPD)。以NH3为燃料时,该电池的PPD为547 mW cm-2,显著高于采用PSFN电极获得的462 mW cm-2。电池性能的提高主要归因于少量Ru的掺杂,它增强了氧还原反应(ORR)活性并促进了合金纳米颗粒在阳极气氛下的原位析出,增加了活性位点并加速了氨分解。此外,该氨燃料单电池在700 ℃下也能保持卓越的操作稳定性(172 h)。这些令人鼓舞的实验结果突显了PSFNRu作为直接氨对称固体氧化物燃料电池(DA-SSOFCs)的双功能电极的优越性,为加速DA-SSOFCs的发展提供了一个潜力巨大的可靠途径。
Symmetric solid oxide fuel cells (SSOFCs) have gained significant attention owing to their cost-effective fabrication, superior thermomechanical compatibility, and enhanced long-term stability. Ammonia (NH3), an excellent hydrogen carrier, is a promising clean energy source with high energy density, easy transportation and storage. Notably, NH3 contained only nitrogen and hydrogen, making it carbon-free. In this study, we synthesize the highly active symmetric electrode material Pr0.32Sr0.48Fe0.75Ni0.2Ru0.05O3-δ (PSFNRu) by replacing partial Fe in Pr0.32Sr0.48Fe0.8Ni0.2O3-δ (PSFN) with 5 mol% Ru. PSFNRu possesses a sufficient quantity of oxygen vacancies, with the capacity to in-situ exsolved alloy nanoparticles in a reducing atmosphere. This nanocomposite is found to promote electrochemical reactions. For example, at 800 °C, the SSOFC employing the PSFNRu electrode achieves a peak power density (PPD) of 736 mW cm-2 when using hydrogen (H2) as the fuel. Under NH3 conditions, the cell delivers a PPD of 547 mW cm-2, significantly surpassing the 462 mW cm-2 recorded for a comparable cell employing the PSFN electrode. The enhanced cell performance is mainly ascribed to Ru doping, which boosts the ORR activity and facilitates the in-situ exsolution of alloy nanoparticles at the anode, increasing active sites and accelerating NH3 decomposition. In addition, remarkable operational stability of the single cell (172 h under NH3 fuel at 700 °C) is also demonstrated. These encouraging experimental results highlight the superiority of PSFNRu as the bi-functional electrodes for direct ammonia symmetric solid oxide fuel cells (DA-SSOFCs), and providing a potential and reliable pathway towards accelerating the development of DA-SSOFCs.
